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Supplementary Methods 

 

Phenotypic Measures 

 

Word Reading (WRead) 

In Austria, Germany, Switzerland, Finland, France, Hungary, and the Netherlands, reading 

accuracy and speed for words were assessed by presenting language-specific material under a 

speeded instruction (“Read as quickly as possible without making mistakes”). The number of 

words read correctly per minute was then converted into z-scores based on grade-appropriate 

norms, separately in each country (see 
1,2

 for details). In the UK dataset, an untimed word 

reading task was administered, which was grade-normed and standardized as above. In the 

Colorado dataset, a composite (average) measure of timed and untimed word reading was 

used, which was age-adjusted and standardized against the normative mean of a matching 

control population (see 
3
 for details). 

 

Word Spelling (WSpell) 

Language-specific standardized spelling tests were administered in each country. In all the 

European countries, spelling tests required to spell single words dictated in sentence frames
1
. 

Grade-specific z-scores for the percentage of words spelled correctly were calculated based 

on language-specific norms in all datasets except Colorado, where the spelling test consisted 

of choosing the correct spelling for a series of real words orally presented and the measure 

was age-adjusted and standardized against a matching control population
3
. 

 

Nonword Reading (NWRead) 

In all non-English-speaking countries nonword reading was tested under a speeded 

instruction, using language-specific material. The relevant measure -namely the total number 

of items correctly read per minute- was grade-normed within each country, as done with the 

word reading task. In UK and Colorado an untimed nonword reading task was administered. 

The resulting raw scores were then grade-normed and age-adjusted in the two countries, 

respectively, as explained above
1–3

. 
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Phoneme Awareness (PA) 

Phoneme awareness is defined as the ability to manipulate the smallest pronounced unit in a 

word (i.e., the phoneme). In all countries except for UK and Colorado, this was assessed 

through a phoneme deletion test. A typical task of this kind consists of pronouncing a sound 

sequence after deleting a specified sound (e.g. say “/gulst/without/l/”). Language-specific 

tasks were constructed with comparable difficulty levels in all countries, to account for 

different orthography consistency
1
. In the UK dataset, PA was assessed through phoneme 

deletion and substitution in single words and spoonerism tasks (i.e. swapping the first sounds 

of two words, e.g. from spoon, dog to doon, spog). In all the countries mentioned above, raw 

scores were grade-normed and standardized as before. In Colorado, PA was assessed through 

i) a classical phoneme deletion task and ii) a phoneme segmentation and transposition task, 

i.e. taking the first phoneme of a word, putting it at the end and adding the sound “/ay/” (e.g. 

rope becomes ope-ray). Then an average score of these tests was computed, which was age-

adjusted and standardized against a matching control population
3
. 

 

Digit Span (DigSpan) 

Digit Span was tested in all countries except the UK through a classical WISC (Wechsler 

Intelligence Scale for Children) digit span task
4,5

. Such a task consisted of reciting a sequence 

of digits visually presented by recalling them in the same (forward) and reverse (backward) 

order. Raw scores (sum of forward and backward test scores) were then converted into scaled 

scores (mean = 10, SD = 3) and finally into z-standardized scores based on national norms 

within each country
1,2

. However, in this case no grade-normalization was carried out
1
. 

 

Rapid automatized naming (RAN) 

RAN tests were administered in all countries except the UK. Children were asked to name as 

quickly and as accurately as possible a matrix of digits (RANdig), letters (RANlet), and 

objects/pictures (RANpic) that was visually presented. The resulting raw score (i.e., the 

number of items correctly named per minute) was then grade-normed and standardized as 

above in all the European countries
1,2

, while it was age-adjusted and then standardized 

against a control population in Colorado
3
. 



3 
 

 

Phenotypic outlier detection 

To check for the presence of phenotypic outliers in our datasets, we defined them within each 

dataset as subjects showing phenotypic z-scores at least 4 standard deviations (SDs) below or 

above the mean for the majority of the traits available within each dataset (i.e., in at least 3 

out of 4 traits in the UK dataset and in at least 5 out of 8 traits in all the other datasets). None 

of the subjects tested met this condition in any dataset. 

 

Genotype quality control (QC) and imputation  

Quality control of genotyped data was conducted in PLINK 1.90b3s
6
. Some of the QC filters 

applied differed between the sibling-based datasets analysed (i.e., UK and Colorado) and the 

cohorts made up of unrelated subjects (AGS, Finland, France, Hungary, and the Netherlands), 

as reported in detail in Table S2. Prior to imputation, genotypes were aligned to the 1000 

genomes phase I v3 reference panel (June 2014 release)
7
 using SHAPEIT v2 (r837)

8
 and 

PLINK v1.90b3s. Subsequently, pre-phasing (haplotype estimation) was conducted for each 

chromosome separately using SHAPEIT. Imputation was performed using IMPUTE2 v2.3.2
9
 

in 5 Mbp chunks with 500 kbp buffers, filtering out variants that were monomorphic in the 

EUR samples. Chunks with < 51 genotyped variants or concordance rates < 92 % were fused 

with neighbouring chunks and re-imputed. After imputation, variants (genotype probabilities) 

were filtered for MAF ≥ 5 %, IMPUTE2 INFO metric ≥ 0.8, and HWE test p-values ≥ 10
-6

 

using QCTOOL v1.4 (see URLs). 
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Trait WRead WSpell NWRead PA DigSpan RANdig RANlet RANpic 

WRead 1 0.665 0.84 0.543 0.298 0.541 0.595 0.486 

WSpell 0.665 1 0.584 0.536 0.322 0.373 0.389 0.366 

NWRead 0.84 0.584 1 0.531 0.285 0.557 0.597 0.463 

PA 0.543 0.536 0.531 1 0.35 0.327 0.361 0.326 

DigSpan 0.298 0.322 0.285 0.35 1 0.173 0.184 0.209 

RANdig 0.541 0.373 0.557 0.327 0.173 1 0.722 0.591 

RANlet 0.595 0.389 0.597 0.361 0.184 0.722 1 0.578 

RANpic 0.486 0.366 0.463 0.326 0.209 0.591 0.578 1 

 

Table S1a. Cross-trait correlations (Pearson’s r coefficient) of the eight cognitive skills analysed in the present study. These coefficients are 

based on the seven datasets made up of unrelated subjects (AGS, Finland, France, Hungary, and the Netherlands; see  Table 1 in the main text 

and Table S2 below), while for the sibling-based datasets (Colorado and UK) cross-trait correlations can be found in Gialluisi et al.
3
 (see Table 

S4a, c). 
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VAR 1 2 3 4 5 6 7 8 

WRead -0.8761 0.0963 -0.2424 0.2118 -0.0457 0.1845 -0.0066 0.2889 

WSpell -0.7293 0.347 -0.2538 -0.0069 -0.3813 -0.3643 0.0401 -0.0599 

NWRead -0.858 0.0548 -0.2271 0.248 0.0769 0.2721 -0.0781 -0.2484 

RANlet -0.7787 -0.4066 0.0992 0.0869 0.2077 -0.1393 0.3847 -0.0163 

RANdig -0.751 -0.4513 0.1535 0.0407 0.1505 -0.2574 -0.3427 0.0249 

RANpic -0.6917 -0.3603 0.2839 -0.3431 -0.3703 0.2367 0.0108 -0.0149 

PA -0.6709 0.4188 -0.124 -0.4957 0.3363 0.0115 -0.01 0.0104 

DigSpan -0.4207 0.5691 0.6812 0.1864 0.0187 0.0024 0.0015 0.0025 

 

Table S1b. Latent variables computed through a Principal Component Analysis (PCA) of the cross-trait correlation matrix (see Table 1a above), 

performed in MatSpd
10

. Here, PC coefficients of each trait on the latent variables computed for the unrotated matrix are reported. We report in 

bold those latent variables (VAR1 to VAR5) which were considered in the correction for multiple phenotypic traits tested, as computed by 

MatSpd (see main text). Overall, these variables explained 90% of the total shared variance in the cognitive traits analysed. 
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Dataset N N After QC Genotyping platform SNPs SNPs After QC 
SNPs after 

imputation 

AGS 1,502 1,454 
Illumina HumanHap 300k 317k 

a 292,056
a 

5,747,699 
Human CoreExome 543k 240,130 

Finland 336 324 Human CoreExome 543k 243,282 6,197,696 

France 165 163 Illumina HumanHap 660k 660k 471,468 6,177,173 

Hungary 243 241 Human CoreExome 543k 236,643 5,948,732 

Netherlands 311 284 Human CoreExome 543k 236,871 5,978,155 

Colorado 585 550 Illumina Human OmniExpress 683k 
b 545,749 6,220,298 

UK 983 923 
Illumina HumanHap 550k 

310k 
b, c 277,931 6,040,246 

Human OmniExpress 

 

Table S2. Main genotype QC statistics and information for each dataset involved in the study. 

a 
A subset of the German sample (N=195) was genotyped on the Illumina 317k chip and shared a low number of SNPs with the Human 

CoreExome array. These samples were thus QCed separately and merged with the rest of the AGS samples only after imputation. 

b 
SNPs in these datasets were preliminarily filtered through Illumina GenomeStudio software before producing hard-call genotype data, as 

described by Gialluisi et al.
3
. 

c
 Since this dataset was genotyped on two different platforms, only variants which were shared between the two arrays were used in the 

following genotype QC and imputation. 
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Filter Sibling-based datasets All other datasets 

Individual genotyping rate > 98 % 

Genetic relatedness (PI-HAT) 

among unrelated subjects: PI-HAT < 0.2; among 

related subjects: PI-HAT in the range [0.2 ; 0.65[ and 

concordant with pedigree based information 
a 

< 0.0625 

Duplicates (PI-HAT) ≤ 0.65 

Sex mismatches with pedigree-based info 
based on X chromosome genetic data  

(PLINK v1.9 default settings) 

Genetic ancestry: distance in first two MDS components from mean 
b, c < 4 SD < 5 SD 

Genome-wide heterozygosity:  

deviation of autosomal heterozygosity from mean 
c 

< 3 SD < 4 SD 

Minor allele frequency 
c
 ≥ 5 % 

Variant call rate 
c
 ≥ 98 % 

HWE test p-value 
c ≥ 10

-6 

Variants on non-autosomal chromosomes removed 

Ambivalent SNPs (A/T and G/C) removed 

Variants not present in the 1000 genomes phase I v3 EUR reference panel removed 

IMPUTE2 info metric ≥ 0.8 
 

Table S3. Details on genotype QC and imputation of the datasets involved in the study. Sibling-based datasets: Colorado and UK; all other 

datasets: Austria-Germany-Switzerland (AGS), Finland, France, Hungary and the Netherlands. 

a
 In sibling-based datasets, samples showing PI_HAT values discordant with pedigree-based information were filtered out (i.e. unrelated subjects 

showing PI-HAT ~0.25-0.5; related subjects showing PI-HAT <0.2; and subjects showing PI-HAT ~1). 

b
 MDS components of the genetic distance matrix were calculated through PLINK 1.9. First, we used the QCed and imputed genetic data to 

build an IBS similarity matrix for all the subjects within each dataset (through the --genome command); then we extracted the first 10 MDS 

components from the IBS matrix (through the --cluster --mds-plot commands). 

c
 These filters were applied both before and after imputation. 
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Dataset Passing QC Wread Wspell NWRead PA DigSpan RANdig RANlet RANpic 

AGS 1454 1127 1116 1126 1126 1127 1126 1126 1126 

Finland 324 324 320 300 324 324 323 323 323 

France 163 143 120 120 119 142 120 120 120 

Hungary 241 236 236 236 234 236 236 236 236 

Netherlands 284 232 228 230 225 230 225 225 224 

Colorado 550 533 527 529 527 532 533 533 533 

UK 923 873 852 868 538 0 0 0 0 

Meta 3939 3468 3399 3409 3093 2591 2563 2563 2562 

 

Table S4. Sample size (after QC) of the datasets involved in the study, including number of subjects analysed for each continuous trait. 
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Power and sample size estimation analysis 

We performed a sample-size estimation analysis using the Genetic Power Calculator
11

. 

Specifically, we computed the sample size (N) required to detect genome-wide significant 

associations with continuous traits, assuming a 50:50 dominance-to-additive QTL ratio, and a 

QTL with MAF = 5% and in perfect LD with the causative SNP, which could explain 1% of 

the total phenotypic variance (i.e. R
2
 = 0.01). Since some of our cohorts were made up of 

unrelated subjects, while others were sibling-based, we performed the analyses in both 

alternative settings. Assuming a dataset of unrelated subjects, a sample size N=4,280 was 

required to have a 80% power to detect genome-wide significant associations (p < 5x10
-8

), 

and N=4,646 to detect associations surviving our correction for multiple traits tested (p < 

1x10
-8

, see Table S1b above and main text). On the other hand, under the assumption of a 

sibling-based cohort (with sibling correlation of 0.5), the sample sizes required were N=2,136 

and N=2,319, respectively. Assuming a QTL with effect size R
2
 = 0.005, the samples sizes 

required to reach a power of 80% were N=8,582 (for association p < 5x10
-8

) and N=9,316 

(for p < 1x10
-8

) in the unrelated subjects settings, and N=4,283 and N=4,649 in the sib-pairs 

settings. Due to the mixed nature of our cohorts –with some datasets made up of unrelated 

subjects and others made up of sibling pairs or, rarely, trios – it is likely that the sample size 

required to have a 80% power in our GWAS meta-analysis is in the middle between the 

values reported above for the different settings. 
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Further analyses of top association signals 

The analyses explained in this section were only conducted on datasets with RANlet 

measures available (see Table S4) and required the preliminary adjustment of phenotypic 

traits for genetic population structure in each dataset. This was carried out differently in the 

datasets including only unrelated subjects (AGS, Finland, France, Hungary, and The 

Netherlands) and in the sibling-based dataset (Colorado). In the former group, we regressed 

the phenotypic traits against the first ten MDS components (previously used as covariates in 

the GWAS). In the latter case, we adjusted the traits for a GRM through the polygenic() 

function of the GenABEL package
12

. 

 

Permutation-based correlation test and effect size estimation 

To assess the robustness of the most significant associations detected (with RANlet), we 

carried out a permutation-based test on the top-associated SNPs at 18q12.2 (rs17663182) and 

8q12.3 (rs16928927) in R v3.2.3
13

. Briefly, we first computed allelic dosages from genotype 

probabilities for the SNPs of interest within each dataset, and adjusted the RANlet score for 

genetic population structure in each dataset (as explained above). Subsequently, we computed 

Pearson correlation through the cor() function of the WGCNA v1.51 package
14

. After the 

calculation of the Pearson correlation coefficient r, we permuted both phenotypic residuals 

and dosages 10,000 times, computing similar correlation coefficients for each of the resulting 

10,000 × 10,000 = 100 million random combinations. Finally, we derived an empirical p-

value from the distribution of these 100 million random correlations (defined as the 

frequency of random correlations which were at least as high as our original correlation 

coefficient r). 

To estimate the fraction of RANlet phenotypic variance explained by rs17663182 (18q12.2) 

and rs16928927 (8q12.3) within each dataset, we used R to compute linear regression R
2
 of 

the phenotypic trait adjusted for genetic population structure vs dosage values of the top-

associated variants. 
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Further tests of pleiotropy 

In addition to the genome-wide multivariate association test across all the DD-related traits 

analyzed, for the two most significant univariate (and multivariate) association signals we 

carried out a specific multivariate association test on RAN traits only, through TATES
15

. This 

software combines the p-values obtained in univariate genetic association analysis on 

multiple (correlated) phenotypes, to produce one multivariate association p-value per SNP, 

while correcting for their correlations. For this analysis, we used as input the association p-

values of the top hits with RANlet, RANdig and RANpic, as well as their correlation matrix 

(i.e. last three columns and last three rows of Table S1 above).  

Moreover, we tested the top association signals for horizontal (independent) pleiotropic 

effects on traits other than RANlet, namely WRead, WSpell, NWRead, PA, DigSpan, 

RANdig and RANpic. To this end, we first regressed these traits, which had previously been 

adjusted for genetic population structure, against the RANlet score in R, separately for each 

dataset. Then we tested the residuals of these traits for association with rs17663182 and 

rs16928927 dosages in PLINK. Finally, we combined the results of the association tests in 

different datasets through an inverse-variance fixed-effect pooled analysis in METAL v25-

03-2011
16

, which allowed us to directly detect concordance of allelic trends across datasets 

for all the SNPs tested. 

 

Test for independent genetic effects in 18q12.2 and 8q12.3 

We tested for the presence of genetic effects independent from the local top hits in 18q12.2 

and 8q12.3 (see above). For each of these two SNPs, we first regressed RANlet scores 

adjusted for population structure against the allelic dosage values and extracted the 

phenotypic residuals in each dataset. Then we used PLINK v1.9 to test these residuals for 

association with all the SNPs positioned up to 50 kb from the most significant variant in each 

region of interest, namely 275 variants on 8q12.3 and 236 variants on 18q12.2. Then we 

combined the association statistics that were produced for each dataset using METAL (as 

described above). 
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SNP×SNP interaction analysis  

To investigate potential epistatic effects of rs17663182 and rs16928927 on RANlet, we 

carried out a two-SNP interaction analysis in R. Since rs16928927 was not available in the 

Finnish dataset, this analysis was conducted only in the AGS, France, Hungary, Netherlands, 

and Colorado datasets. The analysis consisted of two steps: first, we regressed RANlet scores 

adjusted for genetic population structure against the allelic dosages of the SNPs rs17663182 

and rs16928927. Then we regressed the RANlet residual scores against a single interaction 

term of the two SNPs and computed the fraction of phenotypic variance (R
2
) explained by 

this term. 

 

Imaging genetic assessment 

To further investigate the potential neurobiological implications of the top association signals 

detected at rs17663182 (18q12.2) and rs16928927 (8q12.2), we assessed genetic effects of 

these SNPs on different subcortical volumes, including Nucleus Accumbens, Amygdala, 

Caudate Nucleus, Hippocampus, Pallidum, Putamen and Thalamus, through the consultation 

of GWAS summary statistics from  a large GWAS meta-analysis on these traits
17

. This study 

consists of a discovery set of 13,171 subjects of European ancestry, which were made 

available for consultation by the ENIGMA2 consortium, and of an independent replication 

dataset of 17,546 individuals. Standardized protocols for image analysis, quality assessment, 

genetic QC, imputation and association testing were used to ensure data homogeneity within 

the study
17

. These standardized protocols are openly available online 

(http://enigma.ini.usc.edu/protocols/). Briefly, the brain measures examined in this study 

were obtained from structural Magnetic Resonance Imaging (MRI) data collected at 

participating sites around the world. Brain scans were processed and examined at each site 

locally, following the standardized protocol procedures. The subcortical brain measures 

analysed (nucleus accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen 

and thalamus) were delineated in the brain using the segmentation software packages 

FIRST
18

 or FreeSurfer
19

. Similarly, a standardized genotype QC was carried out, on data 

produced through commercially available platforms (see Table S3 in 
17

 for details). Further 

details on scanners used, acquisition protocols, data processing and QC in the different sites 

can be found in Hibar et al.
17

 (see Online Methods and Tables S1-S4).  GWAS analyses with 

the subcortical measures computed as above were conducted at each site, through linear 
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regression model, except for sites with family data, where a mixed-effects model was used to 

control for familial relationships. Age, age
2
, sex, four MDS components, and intracranial 

volume were included as covariates. Where applicable, a diagnosis of a 

neurological/neuropsychiatric disorder, the recruiting centre and the type of scanner used 

were also included as covariates. The resulting files were combined meta-analytically using a 

fixed-effect, inverse-variance-weighted model as implemented in METAL
16

, both in the 

discovery and in the replication datasets, and finally a meta-analysis across the discovery and 

replication data sets was carried out. 

Our choice of investigating subcortical brain volumes in relation to our GWAS top hits was 

determined by two factors, namely i) the increasing evidence implicating subcortical 

structures in reading and language abilities (as reviewed in 
20–22

), and ii) the large sample size 

of the imaging genetics GWAS
17

, which maximized the power to detect significant genetic 

effects. Previous reviews suggested a potential involvement of some these structures in 

learning- and language-related abilities, like putamen, thalamus, hippocampus and globus 

pallidus
20,21

, and in reading-related phonological processes
22

. However, since these brain 

structures are highly interconnected among themselves and with the cortical regions 

implicated in the above mentioned processes
21

, we decided to include in our assessment all 

the subcortical structures which were tested so far
17

. 

For this analysis, we computed a Bonferroni-corrected significance threshold α = 7.1×10
-4

, 

taking into account two SNPs, five independent latent traits tested in our study (computed in 

MatSpD, see above), and the seven neuroimaging subcortical regions analysed by Hibar and 

colleagues
17

. 
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